Achievable capacity improvement by using multi-level modulation format in trench-assisted multi-core fiber system.
نویسندگان
چکیده
We evaluate the impacts of using multi-level modulation formats on the transmission capacity of the multi-core fiber (MCF) having trench-assisted index profile and hexagonal layout. For this evaluation, we utilize the spectral efficiency per unit area, defined as the spatial spectral efficiency (SSE). The results show that the SSE improvement achievable by using the higher-level modulation format can be reduced due to its lower tolerance to the inter-core crosstalk. We also evaluate the effects of using large effective area on the transmission capacity of the trench-assisted MCF. The results show that the use of large effective area can decrease this capacity due to the increased inter-core crosstalk and lengthened cable cutoff wavelength, although it can help increase the transmission distance. Thus, it is necessary to optimize the effective area of MCF by considering both the SSE and transmission distance. However, the results indicate that the effect of using different effective areas on the SSE-distance product is not significant, and it is not useful to increase the effective area of the trench-assisted MCF to be larger than ~110 μm(2).
منابع مشابه
A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)
We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to...
متن کاملSimple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers.
An analytical expression for the mode coupling coefficient in homogeneous trench-assisted multi-core fibers is derived, which has a simple relationship with the one in normal step-index structures. The amount of inter-core crosstalk reduction (in dB) with trench-assisted structures compared to the one with normal step-index structures can then be written by a simple expression. Comparison with ...
متن کاملDesign and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber.
Based on the overlap integral of electromagnetic fields in neighboring cores, a calculating method is proposed for obtaining the coupling coefficient between two adjacent trench-assisted non-identical cores. And a kind of heterogeneous trench-assisted multi-core fiber (Hetero-TA-MCF) with 12 cores is proposed to achieve large effective area (A(eff)) and high density of cores. As bending radius ...
متن کاملIntegrated MCF System Using Cladding-Pumped Amplifiers
A 10.5 Tbit/s optical transmission (15 x 100 Gbit/s QPSK channels per core) over 2,520 km of multicore fiber is achieved using an integrated multicore transmission link consisting of directly spliced multicore components such as fan-in/fanout fiber couplers, a 60 km trench-assisted 7-core hexagonal fiber and cladding-pumped erbium-ytterbium-doped fiber amplifiers.
متن کاملPetabit/s Optical Transmission Using Multicore Space-Division-Multiplexing
The paper presents ultra-high-capacity transmission technologies based on multi-core space-division-multiplexing. In order to realize high-capacity multi-core fiber (MCF) transmission, investigation of low crosstalk fiber and connection technology is important, and high-density signal generation using multilevel modulation and crosstalk management are also key technologies. 1 Pb/s multi-core fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2013